Affiliation:
1. State Key Lab of CAD&CG Zhejiang University
2. School of Computer Science and Technology Zhejiang Sci‐Tech University
Abstract
AbstractPiecewise linear inextensible Cosserat rods are usually represented by Cartesian coordinates of vertices and quaternions on the segments. Such representations use excessive degrees of freedom (DOFs), and need many additional constraints, which causes unnecessary numerical difficulties and computational burden for simulation. We propose a simple yet compact representation that exactly matches the intrinsic DOFs and naturally satisfies all such constraints. Specifically, viewing a rod as a chain of rigid segments, we encode its shape as the Cartesian coordinates of its root vertex, and use axis‐angle representation for the material frame on each segment. Under our representation, the Hessian of the implicit time‐stepping has special non‐zero patterns. Exploiting such specialties, we can solve the associated linear equations in nearly linear complexity. Furthermore, we carefully designed a preconditioner, which is proved to be always symmetric positive‐definite and accelerates the PCG solver in one or two orders of magnitude compared with the widely used block‐diagonal one. Compared with other technical choices including Super‐Helices, a specially designed compact representation for inextensible Cosserat rods, our method achieves better performance and stability, and can simulate an inextensible Cosserat rod with hundreds of vertices and tens of collisions in real time under relatively large time steps.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Computer Graphics and Computer-Aided Design
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献