Image‐based inertial impact test for viscoelastic constitutive identification: A digital replica for error quantification

Author:

Matejunas Andrew1ORCID,Fletcher Lloyd2,Lamberson Leslie1ORCID

Affiliation:

1. Department of Mechanical Engineering Colorado School of Mines Colorado Golden USA

2. Fusion Technology Facility United Kingdom Atomic Energy Authority South Yorkshire UK

Abstract

AbstractPolymers find widespread use in applications where they are subjected to impact loading. Therefore, understanding the time dependence of their mechanical response is critical to the design of structures subjected to these high strain rate environments. However, characterising these materials on microsecond time scales has proven challenging. Traditional experimental techniques rely on satisfying a number of limiting assumptions and typically do not provide direct measurements of the material parameters. Here, we propose a novel implementation of the image‐based inertial impact (IBII) test to extract viscoelastic constitutive parameters on these microsecond time scales using the stress gauge implementation of the virtual fields method. We validate the experiment using a digital replica approach in which the constitutive parameters are first extracted on a finite element model of an IBII test on a viscoelastic material. The finite element data are then used to synthetically deform computer‐generated grid images, which are then polluted with grey‐level noise to simulate the images that would be captured in a real‐life experiment. These images are processed identically to a physical experiment, and the identification is repeated using the full‐field displacements extracted from the computer‐generated images to determine the ideal processing parameters. Parameter identification was found to strongly depend on the processing parameters used to extract the kinematic fields from full‐field images, emphasising the need for computational validation before attempting a physical experiment to extract constitutive parameters. The IBII experimental method was found to be capable of simultaneously identifying the bulk modulus and the shear modulus along with their associated time constant.

Funder

Army Research Laboratory

Engineering and Physical Sciences Research Council

Lawrence Livermore National Laboratory

Publisher

Wiley

Reference56 articles.

1. Polymer Engineering Science and Viscoelasticity

2. Interdisciplinary Applied Mathematics;Simo J. C.,1998

3. CRC mechanical engineering series;Lakes R. S.,1999

4. VISCOELASTIC PROPERTIES OF THE STANDARD LINEAR SOLID*

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3