FVCNet: Detection obstacle method based on feature visual clustering network in power line inspection

Author:

Wang Qiu‐Yu1,Lv Xian‐Long2ORCID,Tang Shi‐Kai2

Affiliation:

1. School of Electrical and Information Engineering Zhengzhou University Zhengzhou Henan China

2. School of Electrical Engineering University of Jinan Jinan China

Abstract

AbstractPower line inspection is an important means to eliminate hidden dangers of power lines. It is a difficult research problem how to solve the low accuracy of power line inspection based on deep neural network (DNN) due to the problems of multi‐view‐shape, small‐size object. In this paper, an automatic detection model based on Feature visual clustering network (FVCNet) for power line inspection is established. First, an unsupervised clustering method for power line inspection is proposed, and applied to construct a detection model which can recognize multi‐view‐shape objects and enhanced object features. Then, the bilinear interpolation method is used to Feature enhancement method, and the enhanced high‐level semantics and low‐level semantics are fused to solve the problems of small object size and single sample. In this paper, FVCNet is applied to the MS‐COCO 2017 data set and self‐made power line inspection data set, and the test accuracy is increased to 61.2% and 82.0%, respectively. Compared with other models, especially for the categories that are greatly affected by multi‐view‐shape, the test accuracy has been improved significantly.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3