Numerical simulation of the effect of surface microgeometry and residual stress on conformal contact fretting fatigue crack initiation behavior

Author:

Song Yifan1,Yan Pei2,Jiao Li2,Gu Huiqing1,Guo Zhibo1,Zhao Bin2,Wang Xibin2

Affiliation:

1. School of Mechanical Engineering Beijing Institute of Technology Beijing China

2. Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology Beijing China

Abstract

AbstractConformal contact is a commonly presented contact form in assemblies. Non‐proportional loading is the main characteristics of conformal contact, which leads to prominent difficulty in revealing fretting crack behavior. In this paper, a finite element prediction model for Ti‐6Al‐4V pin‐hole contact fretting fatigue crack initiation was developed, which simultaneously considered the effect of fretting wear, surface roughness, surface skewness, surface kurtosis, and residual stress. The results show that phase differences of stress component, change in direction of principal stress, and high stress gradient are the main reasons for the initiation of fretting fatigue under conformal contact condition. The model based on the Fatemi–Socie (FS) parameter successfully predicted the location, orientation, and fatigue life of crack initiation, which agrees well with the experimental results. Additionally, machining‐induced residual stress can effectively inhibit mode I crack initiation at valleys. Moreover, ignoring the surface microgeometry characteristics reduces the prediction accuracy of the crack behavior.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3