READRetro: natural product biosynthesis predicting with retrieval‐augmented dual‐view retrosynthesis

Author:

Kim Taein1,Lee Seul2,Kwak Yejin3,Choi Min‐Soo1,Park Jeongbin3ORCID,Hwang Sung Ju24,Kim Sang‐Gyu1ORCID

Affiliation:

1. Department of Biological Sciences KAIST Daejeon 34141 Korea

2. Kim Jaechul Graduate School of AI KAIST Daejeon 34141 Korea

3. Department of BioMedical Convergence Engineering Pusan National University Yangsan 50612 Korea

4. School of Computing KAIST Daejeon 34141 Korea

Abstract

Summary Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval‐augmented dual‐view retrosynthesis (READRetro) as a practical bio‐retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio‐retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting‐edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single‐ and multi‐step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real‐world bio‐retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user‐friendly website (https://readretro.net) and the open‐source code of READRetro have been made available.

Funder

National Research Foundation of Korea

Rural Development Administration

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3