Expression pattern of germ cell markers in cryptorchid stallion testes

Author:

Shakeel Muhammad12,Choi Younju1,Yoon Minjung134ORCID

Affiliation:

1. Department of Animal Science and Biotechnology Kyungpook National University Sangju Republic of Korea

2. Department of Clinical Studies, Faculty of Veterinary and Animal Sciences Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi Pakistan

3. Research Institute for Innovative Animal Science Kyungpook National University Sangju Republic of Korea

4. Department of Horse, Companion and Wild Animal Science Kyungpook National University Sangju Republic of Korea

Abstract

AbstractCryptorchidism affects spermatogenesis and testis development, often resulting in stallion subfertility/infertility. This study aims to identify the specific germ cells impacted by cryptorchism in stallions. In a previous study, we found that PGP9.5 and VASA are molecular markers expressed in different germ cells within stallions. Herein, we assessed the heat stress‐induced response of spermatogonial stem cells (SSCs) in the seminiferous tubules (ST) of cryptorchid stallion testes (CST) and normal stallion testes (NST). This goal was accomplished by comparing PGP9.5 and VASA expression patterns through reverse transcription quantitative PCR and immunofluorescence assays. We also compared the cross‐sectional ST area between groups. Six post‐pubertal Thoroughbred unilateral cryptorchid stallions were used. The relative abundance of the mRNA transcripts of PGP9.5 and VASA was significantly upregulated in the NST group than in the CST group. Additionally, the cross‐sectional ST area and localization of PGP9.5 and VASA in germ cells were significantly higher in the NST group than in the CST group. Regarding Leydig cells, PGP9.5 staining was observed in both groups. Spermatogonia, primary spermatocytes and secondary spermatocytes were immunostained with VASA in the NST group, while immunostaining was only observed in spermatogonia in the CST group. These results indicate long‐term exposure to heat stress conditions, such as cryptorchidism, directly impacts germ cell proliferation and differentiation, leading to impaired spermatogenesis and compromised fertility in stallions.

Funder

Kyungpook National University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3