A Bayesian approach for exploring person × environment interaction within the environmental sensitivity meta‐framework

Author:

Lionetti Francesca1,Calcagnì Antonio2,D'Urso Giulio3,Spinelli Maria1,Fasolo Mirco1,Pluess Michael4,Pastore Massimiliano2

Affiliation:

1. Department of Neurosciences, Imaging and Clinical Sciences G. d'Annunzio University of Chieti‐Pescara Chieti Italy

2. Department of Developmental Psychology and Socialisation University of Padova Padua Italy

3. Department of Psychological, Health and Territorial Sciences G. d'Annunzio University of Chieti‐Pescara Chieti Italy

4. School of Psychology University of Surrey Guildford UK

Abstract

BackgroundFor investigating the individual–environment interplay and individual differences in response to environmental exposures as captured by models of environmental sensitivity including Diathesis‐stress, Differential Susceptibility, and Vantage Sensitivity, over the last few years, a series of statistical guidelines have been proposed. However, available solutions suffer of computational problems especially relevant when sample size is not sufficiently large, a common condition in observational and clinical studies.MethodIn the current contribution, we propose a Bayesian solution for estimating interaction parameters via Monte Carlo Markov Chains (MCMC), adapting Widaman et al. (Psychological Methods, 17, 2012, 615) Nonlinear Least Squares (NLS) approach.ResultsFindings from an applied exemplification and a simulation study showed that with relatively big samples both MCMC and NLS estimates converged on the same results. Conversely, MCMC clearly outperformed NLS, resolving estimation problems and providing more accurate estimates, particularly with small samples and greater residual variance.ConclusionsAs the body of research exploring the interplay between individual and environmental variables grows, enabling predictions regarding the form of interaction and the extent of effects, the Bayesian approach could emerge as a feasible and readily applicable solution to numerous computational challenges inherent in existing frequentist methods. This approach holds promise for enhancing the trustworthiness of research outcomes, thereby impacting clinical and applied understanding.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Probability Intelligent Forecasting Model Based on Rainfall during Flood Season;2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS);2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3