Unlocking the potentials of Ustilago trichophora for up‐cycling polyurethane‐derived monomer 1,4‐butanediol

Author:

Phan An N. T.1ORCID,Prigolovkin Lisa1,Blank Lars M.1ORCID

Affiliation:

1. Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt) RWTH Aachen University Aachen Germany

Abstract

AbstractPlastic usage by microbes as a carbon source is a promising strategy to increase the recycling quota. 1,4‐butanediol (BDO) is a common monomer derived from polyesters and polyurethanes. In this study, Ustilago trichophora was found to be an efficient cell‐factory to valorize BDO. To investigate product formation by U. trichophora, we refined the traditional ion exclusion liquid chromatography method by examining eluent, eluent concentrations, oven temperatures, and organic modifiers to make the chromatography compatible with mass spectrometry. An LC‐UV/RI‐MS2 method is presented here to identify and quantify extracellular metabolites in the cell cultures. With this method, we successfully identified that U. trichophora secreted malic acid, succinic acid, erythritol, and mannitol into the culture medium. Adaptive laboratory evolution followed by medium optimization significantly improved U. trichophora growth on BDO and especially malic acid production. Overall, the carbon yield on the BDO substrate was approximately 33% malic acid. This study marks the first report of a Ustilaginaceae fungus capable of converting BDO into versatile chemical building blocks. Since U. trichophora is not genetically engineered, it is a promising microbial host to produce malic acid from BDO, thereby contributing to the development of the envisaged sustainable bioeconomy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3