Fluorescent Dyes as Partitioning Tracers for the Estimation of NAPL‐Mass Saturation in Porous Media

Author:

Visitacion‐Carrillo Sofia,Colombano Stéfan,Fatin‐Rouge Nicolas,Davarzani DorianORCID

Abstract

AbstractAccurate estimation of the nonaqueous phase liquids (NAPLs) saturation such as chlorinated organic compounds (COCs) in aquifers is crucial for the proper remediation of contaminated groundwater. A combination of conservative and partitioning tracers (PTs) are commonly used to assess NAPL saturations in the subsurface at COC release sites, using the partitioning interwell tracer test (PITT). In this study, five fluorescent dyes were assessed as PTs to estimate the saturation of octanol and 3 COC NAPLs in soil columns. PT experiments required an initial assessment of both partitioning (NAPL/water and octanol/water) and linear free‐energy relations. The predictability of the partition coefficients was correlated to the pH of the two‐phase fluids for both systems (NAPL/water and octanol/water). The COC NAPLs were acidic and some PTs with acid‐base properties, like fluorescein, are easily influenced by pH. The PITT experiments were performed in a column packed with glass beads, using rhodamine WT as PT because of its particular specificity for the complex mixture of NAPLs and sodium chloride as the inert tracer. Breakthrough curves of rhodamine WT were examined to estimate the saturation of a NAPL made of a complex mixture of COCs. The DNAPL residual saturation estimation accuracy was sensitive to both pH variations and the water velocity. The latter was represented by an exponential function which resulted from non‐equilibrium measurements, heterogeneous sweeping of the contaminated sample, and redistribution of the NAPL droplets in the medium.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3