Suborganellar resolution imaging for the localisation of human glycosylation enzymes in tobacco Golgi bodies

Author:

McGinness Alastair J.1,Brooks Susan A.1,Strasser Richard2,Schoberer Jennifer2,Kriechbaumer Verena13ORCID

Affiliation:

1. Department of Biological and Medical Sciences Oxford Brookes University Oxford UK

2. Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences Vienna Austria

3. Centre for Bioimaging Oxford Brookes University Oxford UK

Abstract

AbstractPlant cells are a capable system for producing economically and therapeutically important proteins for a variety of applications, and are considered a safer production system than some existing hosts such as bacteria or yeasts. However, plants do not perform protein modifications in the same manner as mammalian cells do. This can impact on protein functionality for plant‐produced human therapeutics. This obstacle can be overcome by creating a plant‐based system capable of ‘humanising’ proteins of interest resulting in a glycosylation profile of synthetic plant‐produced proteins as it would occur in mammalian systems.For this, the human glycosylation enzymes (HuGEs) involved in N‐linked glycosylation N‐acetylglucosaminyltransferase IV and V (GNTIV and GNTV), β‐1,4‐galactosyltransferase (B4GALT1), and α‐2,6‐sialyltransferase (ST6GAL) were expressed in plant cells. For these enzymes to carry out the stepwise glycosylation functions, they need to localise to late Golgi body cisternae. This was achieved by a protein targeting strategy of replacing the mammalian Golgi targeting domains (Cytoplasmic‐Transmembrane‐Stem (CTS) regions) with plant‐specific ones. Using high‐resolution and dynamic confocal microscopy, we show that GNTIV and GNTV were successfully targeted to the medial‐Golgi cisternae while ST6GAL and B4GALT1 were targeted to trans‐Golgi cisternae.Plant cells are a promising system to produce human therapeutics for example proteins used in enzyme replacement therapies. Plants can provide safer and cheaper alternatives to existing expression systems such as mammalian cell culture, bacteria or yeast. An important factor for the functionality of therapeutic proteins though are protein modifications specific to human cells. However, plants do not perform protein modifications in the same manner as human cells do. Therefore, plant cells need to be genetically modified to mimic human protein modifications patterns. The modification of importance here, is called N‐linked glycosylation and adds specific sugar molecules onto the proteins.Here we show the expression of four human glycosylation enzymes, which are required for N‐linked glycosylation, in plant cells.In addition, as these protein modifications are carried out in cells resembling a factory production line, it is important that the human glycosylation enzymes be placed in the correct cellular compartments and in the correct order. This is carried out in Golgi bodies. Golgi bodies are composed of several defined stacks termed cis‐, medial and trans‐Golgi body stacks. For correct protein function, two of these human glycosylation enzymes need to be placed in the medial‐Golgi attacks and the other two in the trans‐Golgi stacks. Using high‐resolution laser microscopy in live plant cells, we show here that the human glycosylation enzymes are sent within the cells to the correct Golgi body stacks. These are first steps to modify plant cells in order to produce human therapeutics.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3