Mechanisms of Non‐Fresh Groundwater Presence at Water Tables in Highly Permeable Coastal Aquifers

Author:

Tajima Satoshi1ORCID,Liu Jiaqi1,Tokunaga Tomochika1

Affiliation:

1. Graduate School of Frontier Sciences The University of Tokyo 5‐1‐5 Kashiwanoha, Kashiwa‐shi Chiba 277‐8563 Japan

Abstract

AbstractCoastal aquifers with high hydraulic conductivities on the order of 10−2 m s−1 have unconventional salinity distributions with the presence of non‐fresh groundwater at the water table over a wide swath near the coast. This study aims to unravel the mechanisms underlying the phenomenon via numerical simulations for variably saturated, density‐driven flow and solute transport in porous media. The simulation results indicate that the existence of non‐fresh groundwater at the water table is attributed to the upward mass flux in the saturated zone near the coast, which transports solute from deeper groundwater toward the water table. With high hydraulic conductivity, the upward mass flux becomes prominent at shallower elevations because of the high Darcy flux and the shallow saline groundwater. The upward mass flux has two main drivers, upward advection by the upward flow component and transverse dispersion by the seaward flow component. The advective mass flux dominates over the transverse dispersion in the deep part of the saturated zone where only groundwater with sea water salinity exists. In contrast, the transverse dispersion becomes more pronounced than the upward advection in the shallow saturated zone just beneath the water table and in the unsaturated zone immediately above the water table. Our findings help interpret the unconventional salinity distributions observed and elucidate the unique dynamics of groundwater flow and solute transport in highly permeable coastal aquifers.

Funder

University of Tokyo

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3