Continental Scale Hydrostratigraphy: Comparing Geologically Informed Data Products to Analytical Solutions

Author:

Swilley Jackson S.1,Tijerina‐Kreuzer Danielle1ORCID,Tran Hoang V.12,Zhang Jun34,Yang Chen1,Condon Laura E.4,Maxwell Reed M.15ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Princeton University Princeton NJ USA

2. Pacific Northwest National Laboratory Richland WA USA

3. Key Laboratory of VGE of Ministry of Education Nanjing Normal University Nanjing China

4. Hydrology and Atmospheric Sciences University of Arizona Tucson AZ USA

5. The High Meadows Environmental Institute Princeton University Princeton NJ USA

Abstract

AbstractThis study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three‐dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations. R‐squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically‐informed estimates. The results of this work are used to inform a follow‐on study that tests additional data‐driven approaches in multiple basins within the contiguous United States.

Funder

National Science Foundation of Sri Lanka

U.S. Department of Energy

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3