3D bioprinting microgels to construct implantable vascular tissue

Author:

Wang Xinhuan1ORCID,Liu Xin1,Liu Wenli1,Liu Yanyan12,Li Ailing3,Qiu Dong34,Zheng Xiongfei45ORCID,Gu Qi146ORCID

Affiliation:

1. State Key Laboratory of Membrane Biology Institute of Zoology, Chinese Academy of Sciences Chaoyang District Beijing 100101 P. R. China

2. School of Materials Design and Engineering, Beijing Institute of Fashion Technology Chaoyang District Beijing 100029 P. R. China

3. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences Haidian District Beijing 100190 P. R. China

4. University of Chinese Academy of Sciences Huairou District Beijing 101449 P. R. China

5. Shenyang Institute of Automation, Chinese Academy of Sciences Hunnan District Shenyang 110169 P. R. China

6. Beijing Institute for Stem Cell and Regenerative Medicine Chaoyang District Beijing 100101 P. R. China

Abstract

AbstractEngineered implantable functional thick tissues require hierarchical vasculatures within cell‐laden hydrogel that can mechanically withstand the shear stress from perfusion and facilitate angiogenesis for nutrient transfer. Yet current extrusion‐based 3D printing strategies are unable to recapitulate hierarchical networks, highlighting the need for bioinks with tunable properties. Here, we introduce an approach whereby crosslinkable microgels enhance mechanical stability and induce spontaneous microvascular networks comprised of human umbilical cord vein endothelial cells (HUVECs) in a soft gelatin methacryoyl (GelMA)‐based bioink. Furthermore, we successfully implanted the 3D printed multi‐branched tissue, being connected from the rat carotid artery to the jugular vein direct surgical anastomosis. The work represents a significant step toward in the field of large vascularized tissue fabrication and may have implications for the treatment of organ failure in the future.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3