Forecasting the yield curve: the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macro‐economic factors

Author:

Caldeira João F.1ORCID,Cordeiro Werley C.1ORCID,Ruiz Esther2ORCID,Santos André A.P.3ORCID

Affiliation:

1. Department of Economics Universidade Federal de Santa Catarina Florianópolis Brazil

2. Department of Statistics Universidad Carlos III de Madrid Getafe Spain

3. Department of Quantitative Methods CUNEF Universidad Madrid Spain

Abstract

In this article, we analyse the forecasting performance of several parametric extensions of the popular Dynamic Nelson–Siegel (DNS) model for the yield curve. Our focus is on the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macroeconomic variables. We also consider the role of several popular restrictions on the dynamics of the factors. Using a novel dataset of end‐of‐month continuously compounded Treasury yields on US zero‐coupon bonds and frequentist estimation based on the extended Kalman filter, we show that a second decay parameter does not contribute to better forecasts. In concordance with the preferred habitat theory, we also show that the best forecasting model depends on the maturity. For short maturities, the best performance is obtained in a heteroscedastic model with a time‐varying decay parameter. However, for long maturities, neither the time‐varying decay nor the heteroscedasticity plays any role, and the best forecasts are obtained in the basic DNS model with the shape of the yield curve depending on macroeconomic activity. Finally, we find that assuming non‐stationary factors is helpful in forecasting at long horizons.

Funder

Comunidad de Madrid

Agencia Estatal de Investigación

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3