Bootstrap prediction inference of nonlinear autoregressive models

Author:

Wu Kejin1ORCID,Politis Dimitris N.2ORCID

Affiliation:

1. Department of Mathematics University of California San Diego La Jolla CA USA

2. Department of Mathematics and Halicioğlu Data Science Institute University of California San Diego La Jolla CA USA

Abstract

The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One‐step ahead prediction is straightforward using the NLAR model, but the multi‐step ahead prediction is cumbersome. For instance, iterating the one‐step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an or loss criterion. In addition, we construct bootstrap prediction intervals in the multi‐step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive – as opposed to fitted – residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.

Funder

NSF

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3