Phylogenetic and molecular dating analyses of Chinese endemic genus Dipelta (Caprifoliaceae) based on nuclear RAD‐Seq and chloroplast genome data

Author:

Cao Ya‐Nan1ORCID,Wang Meng‐Hao1,Ran Hang1,Tian Bin2,Liu Lu‐Xian3,Wu Qing‐Nan1,Liu Yan‐Yan1,Wang Hong‐Wei1ORCID,Zhu Shan‐Shan4

Affiliation:

1. College of Plant Protection Henan Agricultural University Zhengzhou 450002 China

2. Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration Southwest Forestry University Kunming 650224 China

3. Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences Henan University Kaifeng 475001 China

4. School of Marine Sciences Ningbo University Ningbo 315211 China

Abstract

AbstractDipelta Maxim. (Caprifoliaceae) is a Tertiary relic genus endemic to China, which includes three extant species, Dipelta floribunda, Dipelta yunnanensis, and Dipelta elegans. Recent progress in the systematics and phylogeographics of Dipelta has greatly broadened our knowledge about its origin and evolution, however, conflicted phylogenetic relationships and divergence times have been reported and warrant further investigation. Here, we utilized chloroplast genomes and population‐level genomic data restriction site‐associated DNA‐single nucleotide polymorphisms (RAD‐SNPs) to evaluate the interspecific relationships, population genetic structure and demographic histories of this genus. Our results confirmed the sister relationship between D. elegans and the D. yunnanensisD. floribunda group, but with cyto‐nuclear phylogenetic discordance observed in the latter. Coalescent simulations suggested that this discordance might be attributed to asymmetric “chloroplast capture” through introgressive hybridization between the two parapatric species. Our fossil‐calibrated plastid chronogram of Dipsacales and the coalescent modeling based on nuclear RAD‐SNPs simultaneously suggested that the three species of Dipelta diversified at the late Miocene, which may be related to the uplift of the eastern part of Qinghai–Tibet Plateau (QTP) and adjacent southwest China, and increasing Asian interior aridification since the late Miocene; while in the mid‐Pleistocene, the climatic transition and continuous uplift of the QTP, triggered allopatric speciation via geographical isolation for D. floribunda and D. yunnanensis regardless of bidirectional gene flow. Based on both plastid and nuclear genome‐scale data, our findings provide the most comprehensive and reliable phylogeny and evolutionary histories for Dipelta and enable further understanding of the origin and evolution of floristic endemisms of China.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3