Spatial pattern consistency and repeatability of proximal soil sensor data for digital soil mapping

Author:

Ahrends Hella Ellen1ORCID,Simojoki Asko1ORCID,Lajunen Antti1ORCID

Affiliation:

1. Department of Agricultural Sciences University of Helsinki Helsinki Finland

Abstract

AbstractData from proximal soil sensors can facilitate digital soil mapping at high spatial resolutions. However, their use for predicting static soil properties, such as texture, is affected by spatio‐temporal changes in environmental and measurement conditions. In this research study, seasonal changes in spatial patterns and repeatability of data provided by a platform that simultaneously measures the red (Red) and near infrared (NIR) reflectance, apparent soil electrical conductivity (ECa), temperature, and volumetric moisture content of topsoil (at 3–6 cm depth) were assessed. Test fields are located in Southern Finland with textures dominated by clay and fine sandy till. During single scans, mean relative differences between the data from duplicated measurement points ranged from ~4% to 6% and were the highest for temperature and Red values. The consistency of spatial patterns across seasons (spring and autumn 2021 and 2022) was the highest for ECa values, and the lowest for NIR. ECa and moisture were significant for predicting the clay contents at a cereal grain crop site, whereas temperature was significant at grass ley sites. Errors were generally lower when using spring data compared with autumn data (RMSE ranging from 4.8% to 11.1% for the data from different fields and measurement dates). For the fields, where static soil properties change at small spatial scales, spatially detailed moisture and temperature data support the understanding of seasonal changes in the spatial patterns derived from multi‐sensor data, and the corresponding changes in the performance of calibration models.

Funder

Helsingin Yliopisto

Publisher

Wiley

Subject

Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3