Structural relaxation dynamics of a silicate glass probed by refractive index and ionic conductivity

Author:

Lancelotti Ricardo Felipe12ORCID,Rodrigues Ana Candida Martins2ORCID,Zanotto Edgar Dutra2ORCID

Affiliation:

1. Graduate Program in Materials Science and Engineering Federal University of São Carlos São Carlos SP Brazil

2. Center for Research Technology and Education in Vitreous Materials, Department of Materials Engineering Federal University of São Carlos São Carlos SP Brazil

Abstract

AbstractRelaxation occurs spontaneously in all glasses and is a fundamental step of important technological processes, such as annealing, crystal nucleation, and chemical strengthening by ion exchange. Despite extensive studies over the past decades, there are still conflicting results on whether the kinetics of structural relaxation depends on the analyzed property. Thus, in this study, we used a lithium disilicate glass as a model composition to determine the structural relaxation kinetics during physical aging experiments by measuring the time evolution of the refractive index and ionic conductivity down to 35 K below the initial fictive temperature. In all cases, variations in these properties were adequate to capture the structural changes throughout the aging experiments. At each temperature, the experimental relaxation data fit quite well with the classical stretched exponential relation. We also found that the relaxation process starts faster when probed by ionic conductivity than by refractive index; however, they show similar average relaxation times. These very small structural rearrangements are always the same, but ionic conductivity changes faster than refractive index at the beginning of the process. Our comprehensive results strongly indicate that relaxation dynamics is indeed dependent on the analyzed property.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3