A Gibbs‐INLA algorithm for multidimensional graded response model analysis

Author:

Lin Xiaofan1ORCID,Zhang Siliang1,Tang Yincai1,Li Xuan1

Affiliation:

1. KLATASDS‐MOE School of Statistics, East China Normal University Shanghai China

Abstract

AbstractIn this paper, we propose a novel Gibbs‐INLA algorithm for the Bayesian inference of graded response models with ordinal response based on multidimensional item response theory. With the combination of the Gibbs sampling and the integrated nested Laplace approximation (INLA), the new framework avoids the cumbersome tuning which is inevitable in classical Markov chain Monte Carlo (MCMC) algorithm, and has low computing memory, high computational efficiency with much fewer iterations, and still achieve higher estimation accuracy. Therefore, it has the ability to handle large amount of multidimensional response data with different item responses. Simulation studies are conducted to compare with the Metroplis‐Hastings Robbins‐Monro (MH‐RM) algorithm and an application to the study of the IPIP‐NEO personality inventory data is given to assess the performance of the new algorithm. Extensions of the proposed algorithm for application on more complicated models and different data types are also discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Psychology,Arts and Humanities (miscellaneous),General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3