A promoter trap in transgenic citrus mediates recognition of a broad spectrum of Xanthomonas citri pv. citriTALEs, including in planta‐evolved derivatives

Author:

Shantharaj Deepak1,Minsavage Gerald V.1,Orbović Vladimir2,Moore Gloria A.3,Holmes Danalyn R.4,Römer Patrick5,Horvath Diana M.6,Lahaye Thomas45ORCID,Jones Jeffrey B.1ORCID

Affiliation:

1. Plant Pathology Department University of Florida Gainesville FL USA

2. Citrus Research and Education Center University of Florida Lake Alfred FL USA

3. Department of Horticultural Sciences University of Florida Gainesville FL USA

4. Zentrum für Molekularbiologie der Pflanzen (ZMBP) Eberhard‐Karls‐Universität Tübingen Tübingen Germany

5. Genetics, Department of Biology Ludwig‐Maximilians‐University Munich Martinsried Germany

6. 2Blades Foundation Evanston IL USA

Abstract

SummaryCitrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator‐like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc‐TALE‐trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death‐inducing executor gene, avrGf2, was strictly TALE‐dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the XccTALEtrap mediates resistance to this global panel of Xcc isolates. We also studied in planta‐evolved TALEs (eTALEs) with novel DNA‐binding domains and found that these eTALEs also activate the Xcc‐TALE‐trap, suggesting that the Xcc‐TALE‐trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc‐TALE‐trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc‐TALE‐trap offer a promising sustainable approach to control CBC.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3