Escaping malnutrition by shifting habitats: A driver of three‐spined stickleback invasion in Lake Constance

Author:

Baer Jan1ORCID,Ziegaus Sabrina12,Schumann Mark1ORCID,Geist Juergen2ORCID,Brinker Alexander13ORCID

Affiliation:

1. Fisheries Research Station Baden‐Württemberg Langenargen Germany

2. Aquatic Systems Biology Unit, Department of Life Science Systems Technical University of Munich, TUM School of Life Sciences Freising Germany

3. University of Constance Institute for Limnology Konstanz Germany

Abstract

AbstractFatty acids, and especially long‐chain polyunsaturated fatty acids, are biologically important components in the metabolism of vertebrates, including fish. Essential fatty acids (EFA) are those that in a given animal cannot be synthesized or modified from precursors and must therefore be acquired via the diet. Because EFAs are often unevenly distributed in nature, this requirement may drive species to make behavioral or ecological adaptations to avoid malnutrition. This is especially true for fish like the three‐spined stickleback (Gasterosteus aculeatus L.) of Upper Lake Constance (ULC), whose recent marine ancestors evolved with access to EFA‐rich prey, but which found themselves in an EFA‐deficient habitat. An unexpected and unprecedented ecological shift in the ULC stickleback population from the littoral to pelagic zones in 2012 might be linked to EFA availability, triggering ecological release and enabling them to build a hyperabundant population while displacing the former keystone species, the pelagic whitefish Coregonus wartmanni. To test this hypothesis, sticklebacks from the littoral and pelagic zones of ULC were sampled seasonally in two consecutive years, and their stomach contents and fatty acid profiles were analysed. Pelagic sticklebacks were found to possess significantly higher values of an important EFA, docosahexaenoic acid (DHA), especially during autumn. Evaluation of the DHA supply suggests that sticklebacks feeding in the littoral zone during autumn could not meet their DHA requirement, whereas DHA availability in the pelagic zone was surplus to demand. During autumn, pelagic sticklebacks consumed large amounts of DHA‐rich prey, that is, copepods, whereas littoral sticklebacks relied mainly mostly on cladocerans, which provide much lower quantities of DHA. Access to pelagic zooplankton in 2012 was possibly facilitated by low densities of previously dominant zooplanktivorous whitefish. The present study offers a convincing physiological explanation for the observed expansion of invasive sticklebacks from the littoral to the pelagic zones of Lake Constance, contributing to a phase shift with severe consequences for fisheries.

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3