Vascularization of the gastrointestinal tract of the bottlenose dolphin (Tursiops truncatus, Montagu 1821)

Author:

Gerussi Tommaso1ORCID,Graïc Jean‐Marie1ORCID,Orekhova Ksenia1ORCID,Cozzi Bruno1ORCID,Grandis Annamaria2ORCID

Affiliation:

1. Department of Comparative Biomedicine and Food Science (BCA) University of Padua Legnaro Italy

2. Department of Veterinary Medical Sciences University of Bologna Ozzano dell'Emilia Bologna Italy

Abstract

AbstractOdontocetes primarily rely on fish, cephalopods, and crustaceans as their main source of nutrition. In the digestive system, their polygastric complex exhibits similarities to that of their closest terrestrial relatives such as cows, sheep, and giraffes, while the entero‐colic tract shares similarities with terrestrial carnivores. The morphology, caliber, and structure of the odontocete intestine are relatively constant, and, since there is no caecum, a distinction between the small and large intestine and their respective subdivisions is difficult. To address this issue, we used the intestinal vascularization pattern, specifically the course and branching of the celiac artery (CA) and the cranial and caudal mesenteric arteries (CrMA and CdMA). A series of pictures and dissections of 10 bottlenose dolphins (Tursiops truncatus) were analyzed. Additionally, we performed a cast by injecting colored polyurethane foam in both arteries and veins to measure the caliber of the arteries and clarify their monopodial or dichotomous branching. Our results showed the presence of multiple duodenal arteries (DAs) detaching from the CA. The CrMA gave origin to multiple jejunal arteries, an ileocolic artery (ICA), and, in six cases, a CdMA. In four specimens, the CdMA directly originated from the abdominal aorta. The ICA gave rise to the mesenteric ileal branches (MIB) and mesenteric anti‐ileal branches and the right colic arteries (RCA) and the middle colic arteries. From the CdMA originated the left colic and cranial rectal arteries (LCA and CrRA). The measurements revealed a mixed monopodial and dichotomous branching scheme. The analysis of the arteries and their branching gave us an instrument, based on comparative anatomy, to distinguish between the different intestinal compartments. We used the midpoint of anastomoses between MIB and RCA to indicate the border between the small and the large intestine, and the midpoint of anastomoses between LCA and CrRA, to tell the colon from the rectum. This pattern suggested an elongation of the duodenum and a shortening of the colic tract that is still present in this species. These findings might be related to the crucial need to possess a long duodenal tract to digest prey ingested whole without chewing. A short aboral part is also functional to avoid gas‐producing colic fermentation. The rare origin of the CdMA on the CrMA might instead be a consequence of the cranial thrust of the abdominopelvic organs related to the loss of the pelvic girdle that occurred during the evolution of cetaceans.

Publisher

Wiley

Subject

Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy

Reference35 articles.

1. Vascolarizzazione dell'ansa digiunale;Berta V.;Minerva Chirurgica,1979

2. Anatomy and physiology of the peritoneum

3. Feeding and the Digestive System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3