Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15

Author:

Han Yu12,Jiang Sheng‐Zhe1,Zhong Xiang1,Chen Xing12,Ma Chang‐Kai1,Yang Yan‐Ming1,Mao Yi‐Chen1,Zhou Si‐Da1,Zhou Lei1,Zhang Yan‐Fei1,Huang Xue‐Hui1ORCID,Zhang Hui1ORCID,Li Lai‐Geng2ORCID,Zhu Jun1ORCID,Yang Zhong‐Nan1ORCID

Affiliation:

1. Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences Shanghai Normal University Shanghai China

2. National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China

Abstract

SummaryIn rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR‐RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3