The effect of foamed cement nanocomposite as counter electrode on the performance of dye‐sensitized solar cell

Author:

Falahdoost Moghadam Samira1,Ahmadi Khadijeh2ORCID,Abdolahzadeh Ziabari Ali3,Novin Vajari Sina45,Omidtabrizi Farbod6

Affiliation:

1. Energy Division Iran Polymer and Petrochemical Institute Tehran Iran

2. School of Metallurgy and Materials Engineering, College of Engineering University of Tehran Tehran Iran

3. Nano Research Lab, Lahijan Branch Islamic Azad University Lahijan Iran

4. Department of Energy Engineering Sharif University of Technology Tehran Iran

5. Sasit Lab – Sasan Innovation and Technologies GmbH Zug Switzerland

6. Structural and Earthquake Research Center Amirkabir University of Technology Tehran Iran

Abstract

AbstractImproper interparticle connection between carbon‐based materials, poor interface bonding between the carbon counter electrodes (CEs) and substrate, and low surface area are the main limitations of carbon‐based CEs in dye‐sensitized solar cells. In this study, we utilized foamed cement and binder for adherence and surface area improvement in carbon‐based CEs, such as graphite, multi‐walled carbon nanotubes, and carbon black (CB). The results revealed that incorporating foamed cement into carbon materials improved the resistance, short‐circuit current density, fill factor, and power conversion efficiency of the device. The porous cement/CB nanocomposite CE with a photoconversion efficiency of 5.51% exhibited the best photovoltaic performance. Moreover, this nanocomposite electrode showed an enhancement catalytic activity by high current density in cyclic voltammogram, low charge transfer resistance ) in electrochemical impedance spectroscopy, and high exchange current density in Tafel measurements compared to other electrodes. The porosity of foamed cement has been found to be the main cause of its superior photovoltaic performance, which expands the contact area with the electrode and enables rich ion transport. Additionally, the enhanced performance was due to strong bonding, crack‐free deposited films, superior conductivity, and high catalytic activity.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3