Automatic body part identification in real‐world clinical dermatological images using machine learning

Author:

Sitaru Sebastian1,Oueslati Talel1,Schielein Maximilian C1,Weis Johanna1,Kaczmarczyk Robert1,Rueckert Daniel23,Biedermann Tilo1,Zink Alexander14

Affiliation:

1. Technical University of Munich School of Medicine Department of Dermatology and Allergy Munich Germany

2. Technical University of Munich School of Medicine Institute of AI and Informatics in Medicine Munich Germany

3. Biomedical Image Analysis Group Department of Computing Imperial College London London UK

4. Division of Dermatology and Venereology Department of Medicine Solna Karolinska Institutet Stockholm Sweden

Abstract

SummaryBackgroundDermatological conditions are prevalent across all population sub‐groups. The affected body part is of importance to their diagnosis, therapy, and research. The automatic identification of body parts in dermatological clinical pictures could therefore improve clinical care by providing additional information for clinical decision‐making algorithms, discovering hard‐to‐treat areas, and research by identifying new patterns of disease.Patients and MethodsIn this study, we used 6,219 labelled dermatological images from our clinical database, which were used to train and validate a convolutional neural network. As a use case, qualitative heatmaps for the body part distribution in common dermatological conditions was generated using this system.ResultsThe algorithm reached a mean balanced accuracy of 89% (range 74.8%–96.5%). Non‐melanoma skin cancer photos were mostly of the face and torso, while hotspots of eczema and psoriasis image distribution included the torso, legs, and hands.ConclusionsThe accuracy of this system is comparable to the best to‐date published algorithms for image classification challenges, suggesting this algorithm could boost diagnosis, therapy, and research of dermatological conditions.

Publisher

Wiley

Subject

Dermatology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sprechstunde virtuell statt live – was bleibt auf der Strecke?;JDDG: Journal der Deutschen Dermatologischen Gesellschaft;2024-09

2. Next generation mycological diagnosis: Artificial intelligence‐based classifier of the presence of Malassezia yeasts in tape strip samples;Mycoses;2024-07-29

3. DermSynth3D: Synthesis of in-the-wild annotated dermatology images;Medical Image Analysis;2024-07

4. Automating Weak Label Generation for Data Programming with Clinicians in the Loop;2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE);2024-06-19

5. Grundprinzipien der künstlichen Intelligenz in der Dermatologie erklärt am Beispiel des Melanoms;JDDG: Journal der Deutschen Dermatologischen Gesellschaft;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3