Learning of new associations invokes a major change in modulations of cortical beta oscillations in human adults

Author:

Pavlova Anna12ORCID,Tyulenev Nikita1,Tretyakova Vera1,Skavronskaya Valeriya1,Nikolaeva Anastasia1,Prokofyev Andrey1,Stroganova Tatiana1,Chernyshev Boris123ORCID

Affiliation:

1. Center for Neurocognitive Research (MEG Center) Moscow State University of Psychology and Education Moscow Russian Federation

2. Department of Psychology HSE University Moscow Russian Federation

3. Department of Higher Nervous Activity Lomonosov Moscow State University Moscow Russian Federation

Abstract

AbstractLarge‐scale cortical beta (β) oscillations were implicated in the learning processes, but their exact role is debated. We used MEG to explore the dynamics of movement‐related β‐oscillations while 22 adults learned, through trial and error, novel associations between four auditory pseudowords and movements of four limbs. As learning proceeded, spatial–temporal characteristics of β‐oscillations accompanying cue‐triggered movements underwent a major transition. Early in learning, widespread suppression of β‐power occurred long before movement initiation and sustained throughout the whole behavioral trial. When learning advanced and performance reached asymptote, β‐suppression after the initiation of correct motor response was replaced by a rise in β‐power mainly in the prefrontal and medial temporal regions of the left hemisphere. This post‐decision β‐power predicted trial‐by‐trial response times (RT) at both stages of learning (before and after the rules become familiar), but with different signs of interaction. When a subject just started to acquire associative rules and gradually improved task performance, a decrease in RT correlated with the increase in the post‐decision β‐band power. When the participants implemented the already acquired rules, faster (more confident) responses were associated with the weaker post‐decision β‐band synchronization. Our findings suggest that maximal beta activity is pertinent to a distinct stage of learning and may serve to strengthen the newly learned association in a distributed memory network.

Publisher

Wiley

Subject

Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,Biological Psychiatry,Cognitive Neuroscience,Developmental Neuroscience,Endocrine and Autonomic Systems,Neurology,Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3