Genetic parameters and genomic prediction of growth and breast morphological traits in a crossbreed duck population

Author:

Cai Wentao1ORCID,Hu Jian1,Fan Wenlei12,Xu Yaxi3,Tang Jing1,Xie Ming1,Zhang Yunsheng1,Guo Zhanbao1,Zhou Zhengkui1,Hou Shuisheng1ORCID

Affiliation:

1. Institute of Animal Science Chinese Academy of Agricultural Sciences Beijing China

2. College of Animal Science and Technology Qingdao Agricultural University Qingdao China

3. College of Animal Science and Technology Beijing University of Agriculture Beijing China

Abstract

AbstractGenomic selection (GS) has great potential to increase genetic gain in poultry breeding. However, the performance of genomic prediction in duck growth and breast morphological (BM) traits remains largely unknown. The objective of this study was to evaluate the benefits of genomic prediction for duck growth and BM traits using methods such as GBLUP, single‐step GBLUP, Bayesian models, and different marker densities. This study collected phenotypic data for 14 growth and BM traits in a crossbreed population of 1893 Pekin duck × mallard, which included 941 genotyped ducks. The estimation of genetic parameters indicated high heritabilities for body weight (0.54–0.72), whereas moderate‐to‐high heritabilities for average daily gain (0.21–0.57) traits. The heritabilities of BM traits ranged from low to moderate (0.18–0.39). The prediction ability of GS on growth and BM traits increased by 7.6% on average compared to the pedigree‐based BLUP method. The single‐step GBLUP outperformed GBLUP in most traits with an average of 0.3% higher reliability in our study. Most of the Bayesian models had better performance on predictive reliability, except for BayesR. BayesN emerged as the top‐performing model for genomic prediction of both growth and BM traits, exhibiting an average increase in reliability of 3.0% compared to GBLUP. The permutation studies revealed that 50 K markers had achieved ideal prediction reliability, while 3 K markers still achieved 90.8% predictive capability would further reduce the cost for duck growth and BM traits. This study provides promising evidence for the application of GS in improving duck growth and BM traits. Our findings offer some useful strategies for optimizing the predictive ability of GS in growth and BM traits and provide theoretical foundations for designing a low‐density panel in ducks.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3