Endothelial Stat3 activation promotes osteoarthritis development

Author:

Li Jiadong1234,Zhang Wencai5,Liu Xinru12,Li Guangfeng6,Gu Yuyuan123,Zhang Kun7,Shen Fuming123,Wu Xiang123,Jiang Yingying12ORCID,Zhang Qin12,Zhou Fengjin7,Xu Ke128,Su Jiacan129ORCID

Affiliation:

1. Institute of Translational Medicine Shanghai University Shanghai China

2. Organoid Research Center Shanghai University Shanghai China

3. School of Medicine Shanghai University Shanghai China

4. School of Life Sciences Shanghai University Shanghai China

5. Department of Orthopedics, First Affiliated Hospital Jinan University Guangzhou China

6. Department of Orthopedics Shanghai Zhongye Hospital Shanghai China

7. Department of Orthopedics, Honghui Hospital Xi'an Jiao Tong University Xi'an China

8. Wenzhou Institute of Shanghai University Wenzhou China

9. Department of Orthopaedics Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China

Abstract

AbstractThe mechanism of the balance between subchondral angiogenesis and articular damage within osteoarthritis (OA) progression remains a mystery. However, the lack of specific drugs leads to limited clinical treatment options for OA, frequently failing to prevent eventual joint destruction in patients. Increasing evidence suggests that subchondral bone angiogenesis precedes cartilage injury, while proliferating endothelial cells (ECs) induce abnormal bone formation. Signal transducer and activator of transcription 3 (Stat3) is triggered by multiple cytokines in the OA microenvironment. Here, we observed elevated Stat3 activation in subchondral bone H‐type vessels. Endothelial Stat3 activation will lead to stronger cell proliferation, migration and angiogenesis by simulating ECs in OA. In contrast, either Stat3 activation inhibition or knockdown of Stat3 expression could relieve such alterations. More interestingly, blocking Stat3 in ECs alleviated angiogenesis‐mediated osteogenic differentiation and chondrocyte lesions. Stat3 inhibitor reversed surgically induced subchondral bone H‐type vessel hyperplasia in vivo, significantly downregulating vessel volume and vessel number. Due to the reduced angiogenesis, subchondral bone deterioration and cartilage loss were alleviated. Overall, our data suggest that endothelial Stat3 activation is an essential trigger for OA development. Therefore, targeted Stat3 blockade is a novel promising therapeutic regimen for OA.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3