Protein dose requirements to maximize skeletal muscle protein synthesis after repeated bouts of resistance exercise in young trained women

Author:

Mallinson J. E.1ORCID,Wardle S. L.23,O'Leary T. J.23,Greeves J. P.234,Cegielski J.5,Bass J.5,Brook M. S.1,Wilkinson D. J.5,Smith K.5,Atherton P. J.5,Greenhaff P. L.1

Affiliation:

1. School of Life Sciences, MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research University of Nottingham Nottingham UK

2. Army Health and Performance Research, Army Headquarters Andover UK

3. Division of Surgery and Interventional Science University College London London UK

4. Norwich Medical School University of East Anglia Norwich UK

5. School of Medicine, MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research University of Nottingham Nottingham UK

Abstract

AbstractStudies examining the effect of protein (PRO) feeding on post resistance exercise (RE) muscle protein synthesis (MPS) have primarily been performed in men, and little evidence is available regarding the quantity of PRO required to maximally stimulate MPS in trained women following repeated bouts of RE. We therefore quantified acute (4 h and 8 h) and extended (24 h) effects of two bouts of resistance exercise, alongside protein‐feeding, in women, and the PRO requirement to maximize MPS. Twenty‐four RE trained women (26.6 ± 0.7 years, mean ± SEM) performed two bouts of whole‐body RE (3 × 8 repetitions/maneuver at 75% 1‐repetition maximum) 4 h apart, with post‐exercise ingestion of 15 g, 30 g, or 60 g whey PRO (n = 8/group). Saliva, venous blood, and a vastus lateralis muscle biopsy were taken at 0 h, 4 h, 8 h, and 24 h post‐exercise. Plasma leucine and branched chain amino acids were quantified using gas chromatography mass spectrometry (GC–MS) after ingestion of D2O. Fifteen grams PRO did not alter plasma leucine concentration or myofibrillar synthetic rate (MyoFSR). Thirty and sixty grams PRO increased plasma leucine concentration above baseline (105.5 ± 5.3 μM; 120.2 ± 7.4 μM, respectively) at 4 h (151.5 ± 8.2 μM, p < 0.01; 224.8 ± 16.0 μM, p < 0.001, respectively) and 8 h (176.0 ± 7.3 μM, p < 0.001; 281.7 ± 21.6 μM, p < 0.001, respectively). Ingestion of 30 g PRO increased MyoFSR above baseline (0.068 ± 0.005%/h) from 0 to 4 h (0.140 ± 0.021%/h, p < 0.05), 0 to 8 h (0.121 ± 0.012%/h, p < 0.001), and 0 to 24 h (0.099 ± 0.011%/h, p < 0.01). Ingestion of 60 g PRO increased MyoFSR above baseline (0.063 ± 0.003%/h) from 0 to 4 h (0.109 ± 0.011%/h, p < 0.01), 0 to 8 h (0.093 ± 0.008%/h, p < 0.01), and 0 to 24 h (0.086 ± 0.006%/h, p < 0.01). Post‐exercise ingestion of 30 g or 60 g PRO, but not 15 g, acutely increased MyoFSR following two consecutive bouts of RE and extended the anabolic window over 24 h. There was no difference between the 30 g and 60 g responses.

Funder

Ministry of Defense

Publisher

Wiley

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3