Auxin and abscisic acid play important roles in promoting glucose metabolism of reactivated young kernels of maize (Zea mays L.)

Author:

Du Kang12,Zhao Wenqing13ORCID,Lv Zhiwei1,Liu Lin1,Ali Saif4,Chen Binglin13ORCID,Hu Wei13,Zhou Zhiguo13ORCID,Wang Youhua13

Affiliation:

1. College of Agriculture Nanjing Agricultural University Nanjing China

2. College of Agronomy and Biotechnology Southwest University Chongqing China

3. Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC‐MCP) Nanjing Agricultural University Nanjing China

4. Department of Agronomy University of Agriculture Faisalabad Pakistan

Abstract

AbstractIn maize, young kernels that are less competitive and have poor sink activity often abort. Studies have indicated that such poor competitiveness depends, in part, on the regulation by auxin (IAA) and abscisic acid (ABA). However, the mechanisms for such effects remain unclear. We used pollination‐blocking and hand‐pollination treatments accompanied by multi‐omics and physiological tests, to identify underlying mechanism by which IAA and ABA, along with sugar signaling affect kernel development. Results showed that preventing pollination of the primary ears reactivated kernels in the secondary ears and altered both sugar metabolism and hormone signaling pathways. This was accompanied by increased enzyme activities in carbon metabolism and concentrations of glucose and starch, as well as increased levels of IAA and decreased levels of ABA in the reactivated kernels. Positive and negative correlations were observed between IAA, ABA contents and cell wall invertase (CWIN) activity, and glucose contents, respectively. In vitro culture revealed that the expression of genes involved in glucose utilization was upregulated by IAA, but downregulated by ABA. IAA could promote the expression of ABA signaling genes ZmPP2C9 and ZmPP2C13 but downregulated the expression of Zmnced5, an ABA biosynthesis gene, and ZmSnRK2.10, which is involved in ABA signal transduction. However, these genes showed opposite trends when IAA transport was inhibited. To summarize, we suggest a regulatory model for how IAA inhibits ABA metabolism by promoting the smooth utilization of glucose in reactivated young kernels. Our findings highlight the importance of IAA in ABA signaling by regulating glucose production and transport in maize.

Funder

National Basic Research Program of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3