Plant communication across different environmental contexts suggests a role for stomata in volatile perception

Author:

Aguirre Natalie M.1ORCID,Grunseich John M.2ORCID,Lima Andreísa F.3ORCID,Davis Stephen D.4,Helms Anjel M.12ORCID

Affiliation:

1. Ecology and Evolutionary Biology Program Texas A&M University College Station Texas USA

2. Department of Entomology Texas A&M University College Station Texas USA

3. Department of Entomology Lavras Federal University (UFLA) Lavras Minas Gerais Brazil

4. Natural Science Division Pepperdine University Malibu California USA

Abstract

AbstractPlants can detect herbivore‐induced plant volatiles (HIPVs) from their damaged neighbours and respond by enhancing or priming their defenses against future herbivore attack. Plant communication and defense priming by volatile cues has been well documented, however, the extent to which plants are able to perceive and respond to these cues across different environmental contexts remains poorly understood. We investigated how abiotic changes that modulate stomatal conductance and/or defense signalling affect the ability of maize plants to perceive HIPVs and respond by priming their defenses. During light exposure, when stomata were open and conditions allowed for defense signal biosynthesis, the individual compounds indole and (Z)−3‐hexenyl acetate primed maize defenses. Neither compound primed defenses under environmental conditions that closed stomata and/or altered defense signalling. Moreover, plants were not primed when exposed to indole or (Z)−3‐hexenyl acetate in darkness (while stomata were closed) and then subjected to simulated herbivory in the light, to ensure defense induction. The full blend of HIPVs primed maize defenses in light conditions but suppressed defense induction during dark exposure and wounding. These findings indicate that environmental context is important for plant communication and defense priming and suggest that stomata play a role in plant perception of HIPVs.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3