Optimistic growth of marginal region plantations under climate warming: Assessing divergent drought resilience

Author:

Li Jitang12ORCID,Xie Yuyang1ORCID,Camarero Jesús Julio2ORCID,Gazol Antonio2ORCID,González de Andrés Ester2ORCID,Ying Lingxiao3,Shen Zehao1

Affiliation:

1. The MOE Laboratory for Earth Surface Processes Institute of Ecology, College of Urban and Environmental Science, Peking University Beijing China

2. Instituto Pirenaico de Ecología (IPE‐CSIC) Zaragoza Spain

3. State Key Laboratory of Urban and Regional Ecology Research Centre for Eco‐Environmental Sciences, Chinese Academy of Sciences Beijing China

Abstract

AbstractGiven the context of significant global warming and the intensification of extreme climate events in the last century, large‐scale reforestation and afforestation have been recognized as effective strategies to mitigate the climate crisis. Since the 1970s, China has launched several afforestation programs aimed at regional ecological protection, playing an important role in reaching carbon neutrality by 2060. This study provided a detailed analysis of the growth suitability of the main planted conifers (Pinus sylvestris var. mongolica and Pinus tabulaeformis) and broadleaves (Populus spp., Robinia pseudoacacia) in the semi‐arid northern China. We compared the radial growth trends of plantations and their responses to extreme droughts from 1980 to 2018. Growth of most plantations has significantly increased over time, but broadleaves showed recent growth reductions in the past decade, which may be related to tree age and reduced soil moisture. Nevertheless, under warmer climate scenarios, the growth of plantations is forecasted to continue increasing. Broadleaves showed a better post‐drought recovery, probably linked to their anisohydric behavior, than conifers, which presented a better resistance to drought. Growth of conifers depended more on warmer temperature and better precipitation conditions during the growing season, whereas broadleaves mainly reacted to warm temperature. Additionally, pre‐drought growth levels weakened resilience components, while post‐drought precipitation compensated for drought‐induced growth deficit. Growth and resilience were negatively related to tree age, while higher stand density reduced growth. This assessment and projections of growth and drought resilience indicate the sustainability of most plantations in semi‐arid regions, but future warmer and drier conditions may lead to an uncertain future regarding forest health and reduce their carbon sink potential.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3