Among‐population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history

Author:

Wolf Sarah E.12ORCID,Woodruff Mary J.1ORCID,Chang van Oordt David A.34ORCID,Clotfelter Ethan D.5ORCID,Cristol Daniel A.6ORCID,Derryberry Elizabeth P.7ORCID,Ferguson Stephen M.89ORCID,Stanback Mark T.10ORCID,Taff Conor C.34ORCID,Vitousek Maren N.34ORCID,Westneat David F.8ORCID,Rosvall Kimberly A.1ORCID

Affiliation:

1. Department of Biology Indiana University Bloomington Indiana USA

2. Institute of Evolutionary Biology, School of Biological Sciences University of Edinburgh Edinburgh UK

3. Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA

4. Cornell Lab of Ornithology Ithaca New York USA

5. Department of Biology Amherst College Amherst Massachusetts USA

6. Department of Biology William & Mary Williamsburg Virginia USA

7. Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA

8. Department of Biology University of Kentucky Lexington Kentucky USA

9. Department of Biology University of Richmond Richmond Virginia USA

10. Department of Biology Davidson College Davidson North Carolina USA

Abstract

Abstract Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12‐day‐old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non‐linear variation in latitude: nestlings from mid‐latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12‐day‐old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.

Funder

Defense Advanced Research Projects Agency

Wilson Ornithological Society

National Institutes of Health

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3