Development of Synthetic Clinopyroxene Reference Materials for In Situ Lithium Isotope Measurement by LA‐MC‐ICP‐MS

Author:

Yang Ao1,Lin Jie1ORCID,Liu Yongsheng1,Liu Zhenyi1,Lin Ran1,Deng Kexin2,Hu Zhaochu1ORCID

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources School of Earth China University of Geosciences Wuhan 430074 China

2. School of Earth Resources Wuhan 430074 China

Abstract

The isotopic composition of lithium (Li) in clinopyroxene (Cpx), determined via in situ micro‐analysis, has been employed as a potential geochemical tool for studying various geological processes such as crust‐mantle recycling, silicate weathering and fluid‐rock interaction. To obtain precise and accurate Li isotopic compositions in Cpx by LA‐MC‐ICP‐MS, synthetic Cpx matrix‐matched reference materials (RMs) were prepared in this study. Six Cpx‐matrix RMs were prepared by mixing metallic oxides with GSP‐2 (granodiorite) or pure L‐SVEC solution and melting them into glasses (GSP‐2 + oxide; L‐SVEC + oxide). Two representative synthetic glasses, CPXA01 and CPXB01, were subjected to a series of analyses to investigate the possible qualification of the RMs for in situ Li isotope measurement by LA‐MC‐ICP‐MS, including elemental homogeneity analysis (elemental mapping analysis and spot analysis), Li isotopic homogeneity analysis and accurate Li isotopic determination. The applicability of the synthetic Cpx‐matrix RMs was highlighted by comparing the δ7Li values of three natural Cpx calibrated against the synthetic Cpx‐matrix RMs and other commonly used RMs with different matrices (NIST SRM 612, BCR‐2G, GOR128‐G, StHs6/80‐G, KL2‐G and T1‐G), respectively. Additionally, CPXB01‐05 RMs with the same matrix but different Li contents were prepared to explore the Li content mismatch effect, which is significant for accurate determination of in situ Li isotopic composition by LA‐MC‐ICP‐MS. The results of the cross‐calibration of Li isotopes in CPXA01 and CPXB01 suggested no obvious Li isotopic fractionation between the two types of glasses (GSP‐2 + oxide; L‐SVEC + oxide). Thus, the two methods of producing Cpx‐matrix RMs are suitable for preparing the matrix‐matched RMs for in situ microanalysis for Li isotopes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Geochemistry and Petrology,Geology,Geochemistry and Petrology,Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3