Affiliation:
1. National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology Huazhong Agricultural University Wuhan China
2. National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan China
Abstract
AbstractPhospholipids are important components of biological membranes, participating in various biological processes, including plant development and responses to biotic and abiotic stresses. A previous study showed that mutation of the rice OsCDS5 (CDP‐DAG Synthase) gene alters lipid metabolism, causing enhanced abiotic stress responses, yellowing of leaves at the seedling stage and delayed plant development. Here, we observed that the Oscds5 mutant shows enhanced resistance to rice blast, bacterial blight and bacterial leaf streak. Mutation of OsCDS5 promotes production of reactive oxygen species and increases the expression level of multiple defence‐related genes. Transcriptomic analyses indicate that genes involved in responses to stress, biotic/abiotic stimuli and metabolic processes are highly upregulated and enriched in mutant Oscds5. Metabolomic analyses showed that differential metabolites were enriched in the lipid metabolic and tryptophan metabolic pathways. The decreased level of phosphatidylinositol and increased level of serotonin probably contribute to enhanced disease resistance of the Oscds5 mutant. Taken together, mutation of OsCDS5 enhances abiotic and biotic stress responses, and OsCDS5 may be a promising target for genetic engineering to enhance the resilience of rice to abiotic and biotic stresses simultaneously.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献