Neural Denoising for Deep‐Z Monte Carlo Renderings

Author:

Zhang Xianyao12ORCID,Röthlin Gerhard2,Zhu Shilin3,Aydın Tunç Ozan2,Salehi Farnood2,Gross Markus12,Papas Marios2ORCID

Affiliation:

1. ETH Zürich Switzerland

2. Disney Research | Studios Switzerland

3. Pixar Animation Studios USA

Abstract

AbstractWe present a kernel‐predicting neural denoising method for path‐traced deep‐Z images that facilitates their usage in animation and visual effects production. Deep‐Z images provide enhanced flexibility during compositing as they contain color, opacity, and other rendered data at multiple depth‐resolved bins within each pixel. However, they are subject to noise, and rendering until convergence is prohibitively expensive. The current state of the art in deep‐Z denoising yields objectionable artifacts, and current neural denoising methods are incapable of handling the variable number of depth bins in deep‐Z images. Our method extends kernel‐predicting convolutional neural networks to address the challenges stemming from denoising deep‐Z images. We propose a hybrid reconstruction architecture that combines the depth‐resolved reconstruction at each bin with the flattened reconstruction at the pixel level. Moreover, we propose depth‐aware neighbor indexing of the depth‐resolved inputs to the convolution and denoising kernel application operators, which reduces artifacts caused by depth misalignment present in deep‐Z images. We evaluate our method on a production‐quality deep‐Z dataset, demonstrating significant improvements in denoising quality and performance compared to the current state‐of‐the‐art deep‐Z denoiser. By addressing the significant challenge of the cost associated with rendering path‐traced deep‐Z images, we believe that our approach will pave the way for broader adoption of deep‐Z workflows in future productions.

Publisher

Wiley

Reference55 articles.

1. AbadiM. AgarwalA. BarhamP. et al.:TensorFlow: Large-scale machine learning on heterogeneous systems 2015. URL:http://tensorflow.org/. 6

2. ÁfraA. T.:Intel® Open Image Denoise 2023.https://www.openimagedenoise.org. 13

3. Arnold:Deep exr - user guide 2023. Accessed: 2023-09-30. URL:https://help.autodesk.com/view/ARNOL/ENU/?guid=arnold_user_guide_ac_output_aovs_ac_deep_exr_html. 1

4. The Design and Evolution of Disney’s Hyperion Renderer

5. doi:10.1145/3182159. 6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3