Microclimate, soil nutrients and stable isotopes in relation to elevation in the Australian Wet Tropics

Author:

Singh Ramesh Arun12ORCID,Cheesman Alexander W.23ORCID,McDonald William J. F.4,Crayn Darren M.25,Cernusak Lucas A.2ORCID

Affiliation:

1. Terrestrial Ecosystem Research Network Indooroopilly Queensland Australia

2. Centre for Tropical Environment and Sustainability Sciences, College of Science and Engineering James Cook University Cairns Queensland Australia

3. College of Life and Environmental Sciences University of Exeter Exeter UK

4. Queensland Herbarium Toowong Queensland Australia

5. The Australian Tropical Herbarium James Cook University Cairns Queensland Australia

Abstract

AbstractMicroclimate, such as soil and surface air temperatures, and edaphic factors, such as soil organic matter content and nutrient availability, are important parameters of the below‐canopy environment that shape vegetation communities. Yet, the literature examining how microclimate and edaphic properties vary along elevation gradients in tropical rainforests is limited, hindering our understanding of key ecological processes in the forest understory. Here we present an analysis of high‐resolution (15‐min frequency) microclimate data spanning approximately 3 years (December 2019–September 2022) across 20 rainforest sites, ranging from 40 to 1550 meters above sea level (a.s.l.). We also present analyses of soil chemical properties, including δ15N isotope composition from the same study sites. Our study found soils were consistently cooler than air during the day and warmer than air during the night across all sites. The difference in mean temperature between the wettest (summer) and the driest (winter) quarter for both soil and air also increased with elevation, as did the annual temperature range. Soil organic matter content and C:N ratio increased with elevation, in concert with a decline in soil pH. Together, edaphic factors displayed a strong correlation with climatic factors, suggesting temperature as an important driver of soil properties across elevation. Finally, soil δ15N was found to decline with increasing elevation, suggesting a tighter N cycle in high elevation, higher organic matter soils. These observations highlight the existing elevational trends in both microclimate and edaphic variables in the Australian Wet Tropics; understanding how these trends may shift with climate change could be important for predicting impacts on species distributions.

Funder

Ian Potter Foundation

Skyrail Rainforest Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3