Flood resilience: Response of an Australian sub‐tropical riparian rainforest to catastrophic flooding

Author:

Martiniello Léandra1ORCID,Baker Andrew G.1ORCID,Grant John Campbell1,Palmer Graeme1

Affiliation:

1. Forest Research Centre Southern Cross University East Lismore New South Wales Australia

Abstract

AbstractRiparian taxa are subject to dynamic, intense, flood‐related stressors, and have evolved traits to persist in this environment. Climate change‐induced intensification of flood regimes pose a threat to these ecosystems, and little is understood about their resilience to this intensification. Following two consecutive major floods (the first flood record‐breaking) along the subtropical coast of eastern Australia in March 2022, we used methods based on persistence (resprouting, seedling recruitment), and floristic structure (height, DBH) and assemblage, to assess the resilience of an old growth riparian rainforest to severe flooding in the 12‐month post‐flooding window. Smallerwoody plants (stems <10 m tall, <30 cm DBH) were the most impacted and were significantly impacted by flooding. Native species richness and plant density (plants/m−2) significantly decreased between before and 3 months post‐flooding, after which they continued to significantly increase to surpass pre‐flood values. Overall, ~35% of taxa exhibited resprouting, ~28% of taxa exhibited seedling recruitment, and ~11% exhibited both resprouting and recruitment. An additional ~21% native taxa were introduced to the site via seedling recruitment, along with 65 invasive species. Model‐based multivariate analysis showed flooding significantly altered community floristics (p = 0.026) at 3 months. At 12 months post‐flooding the community was recovering, becoming more floristically similar to its pre‐flood composition. The riparian rainforest exhibited high resilience to intense flooding. Impact, persistence, and resilience varied amongplots, and the community took 12 months to move into recovery. We found that persistence, and floristic structure and composition weighted against impact were effective measures of ecosystem resilience. In the absence of further consecutive events, mature‐phase riparian rainforests are likely to be structurally and floristically resilient to climate change‐induced amplification of flood regimes. Further studies should build on this framework to include invasive weed species impacts, for a more accurate assessment of impacts.

Funder

Southern Cross University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3