In vivo characterization of laser‐assisted delivery of hyaluronic acid using multiphoton fluorescence lifetime imaging

Author:

Nguyen Lynhda1ORCID,Mess Christian2,Schneider Stefan W.2,Huck Volker2ORCID,Herberger Katharina1

Affiliation:

1. Laser Department, Department of Dermatology and Venereology University Medical Center Hamburg‐Eppendorf Hamburg Germany

2. Department of Dermatology and Venereology University Medical Center Hamburg‐Eppendorf Hamburg Germany

Abstract

AbstractLaser‐assisted drug delivery (LADD) is a treatment method to enhance the penetration of pharmaceuticals through the skin. The aim of the present study is to track hyaluronic acid (HA) and analyse its effect on human skin in vivo after ablative fractional laser (AFL) treatment. Healthy male and female subjects were recruited. Four areas were marked on their forearms of each volunteer, and each area was assigned to one of the following treatment options: AFL + HA, AFL only, HA only or untreated control. A carbon dioxide laser was used for the AFL treatment. Follow‐up measurements were scheduled 30 min and 30 days after treatment using multiphoton tomography equipped with fluorescence lifetime imaging (MPT‐FLIM). A total of 11 subjects completed the study. By detecting fluorescence lifetimes, the HA and the anaesthetic ointment were clearly distinguishable from surrounding tissue. After AFL treatment, HA could be visualized in all epidermal and upper dermal layers. In contrast, HA in intact skin was only detected in the superficial layers at distinctly lower levels. The applied HA gel seemed to have beneficial properties for the wound healing process after laser treatment. LADD has proven to be a fast and effective method to increase HA uptake into the skin, allowing for improved hydration and skin rejuvenation over time. Furthermore, LADD could be a beneficial treatment option in laser resurfacing. MPT‐FLIM proved to be an appropriate diagnostic tool for drug delivery tracking and monitoring of treatment response for individualized therapy adjustment.

Publisher

Wiley

Subject

Dermatology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3