Improving HLA typing imputation accuracy and eplet identification with local next‐generation sequencing training data

Author:

Lhotte Romain123ORCID,Letort Véronique2ORCID,Usureau Cédric1,Jorge‐Cordeiro Debora1,Siemowski Jérémy1,Gabet Lionel2,Cournede Paul‐Henry2ORCID,Taupin Jean‐Luc13ORCID,

Affiliation:

1. Immunology and Histocompatibility Laboratory Saint‐Louis Hospital Paris France

2. MICS—Research laboratory in Mathematics and Computer Science at CentraleSupélec Gif‐Sur‐Yvette France

3. INSERM U976 Eq. 3 HIPI IRSL Saint‐Louis Hospital Université de Paris‐Cité Paris France

Abstract

Assessing donor/recipient HLA compatibility at the eplet level requires second field DNA typings but these are not always available. These can be estimated from lower‐resolution data either manually or with computational tools currently relying, at best, on data containing typing ambiguities. We gathered NGS typing data from 61,393 individuals in 17 French laboratories, for loci A, B, and C (100% of typings), DRB1 and DQB1 (95.5%), DQA1 (39.6%), DRB3/4/5, DPB1, and DPA1 (10.5%). We developed HaploSFHI, a modified iterative maximum likelihood algorithm, to impute second field HLA typings from low‐ or intermediate‐resolution ones. Compared with the reference tools HaploStats, HLA‐EMMA, and HLA‐Upgrade, HaploSFHI provided more accurate predictions across all loci on two French test sets and four European‐independent test sets. Only HaploSFHI could impute DQA1, and solely HaploSFHI and HaploStats provided DRB3/4/5 imputations. The improved performance of HaploSFHI was due to our local and nonambiguous data. We provided explanations for the most common imputation errors and pinpointed the variability of a low number of low‐resolution haplotypes. We thus provided guidance to select individuals for whom sequencing would optimize incompatibility assessment and cost‐effectiveness of HLA typing, considering not only well‐imputed second field typing(s) but also well‐imputed eplets.

Publisher

Wiley

Subject

Genetics,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3