Cinnamaldehyde protects cardiomyocytes from oxygen‐glucose deprivation/reoxygenation‐induced lipid peroxidation and DNA damage via activating the Nrf2 pathway

Author:

Li Yan‐guang1,Li Jiang‐hong1,Wang Hai‐qin1,Liao Junhua2,Du Xiao‐ya1

Affiliation:

1. Department of Cardiology Central Hospital of Jiaozuo Coal Industry (Group) Co., LTD Jiaozuo Henan China

2. Université Paris Dauphine Paris France

Abstract

AbstractRapid restoration of perfusion in ischemic myocardium is the most direct and effective treatment for coronary heart disease but may cause myocardial ischemia/reperfusion injury (MIRI). Cinnamaldehyde (CA, C9H8O), a key component in the well‐known Chinese medicine cinnamomum cassia, has cardioprotective effects against MIRI. This study aimed to observe the therapeutic effect of CA on MIRI and to elucidate its potential mechanism. H9C2 rat cardiomyocytes were pretreated with CA solution at 0, 10, and 100 μM, respectively and subjected to oxygen‐glucose deprivation/reoxygenation (OGD/R). Then the cell viability, the NF‐κB and caspase3 gene levels, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, superoxide dismutase (SOD) level, reactive oxygen species (ROS) generation, 4‐hydroxynonenal (4‐HNE), and malondialdehyde (MDA) were detected. The severity of DNA damage was assessed by tail moment (TM) values using alkaline comet assay. Besides, the DNA damage‐related proteins and the key proteins of the Nrf2 pathway were detected by western blot. CA treatment increased the cell viability, GHS/GSSG ratio, SOD level, PARP1, Nrf2, PPAR‐γ, and HO‐1 protein levels of H9C2 cardiomyocytes, while reducing NF‐κB, caspase3, ROS level, 4‐HNE and MDA content, γ‐H2AX protein level, and TM values. Inhibition of the Nrf2 pathway reversed the effect of CA on cell viability and apoptosis of OGD/R induced H9C2 cardiomyocytes. Besides, 100 μM CA was more effective than 10 μM CA. In the OGD/R‐induced H9C2 cardiomyocyte model, CA can protect cardiomyocytes from MIRI by attenuating lipid peroxidation and repairing DNA damage. The mechanism may be related to the activation of the Nrf2 pathway.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3