Nemo‐like kinase blocks myeloid differentiation by targeting tumor suppressor C/EBPα in AML

Author:

Singh Anil Kumar12,Thacker Gatha1,Upadhyay Vishal12,Mishra Mukul1,Sharma Akshay1,Sethi Arppita12,Chowdhury Sangita1,Siddiqui Shumaila12,Verma Shailendra Prasad3,Pandey Amita3,Bhatt Madan L. B.3,Trivedi Arun Kumar12ORCID

Affiliation:

1. Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. King George's Medical University Lucknow India

Abstract

CCAAT/enhancer‐binding protein α (C/EBPα), a key myeloid transcription factor, drives myeloid differentiation from blast cells by regulating the expression of granulocyte colony stimulating factor receptor and C/EBPε as required for promoting granulocyte differentiation. Here, we show that serine/threonine‐protein kinase NLK, also known as Nemo‐like kinase, physically associates with C/EBPα and phosphorylates it at multiple sites, including Ser21, Thr226, Thr230 and S234, leading to its ubiquitin‐mediated degradation. Individual phospho‐point mutants of C/EBPα could be phosphorylated by NLK, but a mutant with all phosphorylatable residues replaced by alanine resisted phosphorylation and degradation by NLK, as did the single point mutants. Furthermore, although ectopic expression of NLK enhanced phosphorylation of C/EBPα levels, it markedly inhibited total C/EBPα protein levels. Conversely, NLK depletion inhibited endogenous C/EBPα phosphorylation but enhanced its total protein levels in several acute myeloid leukemia (AML) cell lines and in peripheral blood mononuclear cells isolated from number of AML patient samples. Importantly, NLK depletion in peripheral blood mononuclear cells from primary AML patients not only restored C/EBPα protein levels, but also induced myeloid differentiation, suggesting that NLK could be therapeutically targeted to restore C/EBPα to resolve differentiation arrest in AML.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3