C1ql1 expression in oligodendrocyte progenitor cells promotes oligodendrocyte differentiation

Author:

Altunay Zeynep M.1ORCID,Biswas Joyshree1ORCID,Cheung Hiu W.1,Pijewski Robert S.12ORCID,Papile Lucille E.1,Akinlaja Yetunde O.3ORCID,Tang Andrew1,Kresic Lyndsay C.1,Schouw Alexander D.1,Ugrak Maksym V.1,Caro Keaven1ORCID,Peña Palomino Perla A.4ORCID,Ressl Susanne4ORCID,Nishiyama Akiko35ORCID,Crocker Stephen J.15ORCID,Martinelli David C.15ORCID

Affiliation:

1. Department of Neuroscience University of Connecticut Health Farmington CT USA

2. Department of Biology Anna Maria College Paxton MA USA

3. Department of Physiology and Neurobiology University of Connecticut Storrs CT USA

4. Department of Neuroscience The University of Texas at Austin TX USA

5. The Connecticut Institute for the Brain and Cognitive Sciences (IBACS) Storrs CT USA

Abstract

Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher‐order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent‐like (C1QL) protein family has been studied for their functions at neuron–neuron synapses, but we show that OPCs express C1ql1. We created OPC‐specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone‐induced demyelination. In vivo over‐expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.

Funder

Congressionally Directed Medical Research Programs

Common Fund

National Institute of Neurological Disorders and Stroke

National Multiple Sclerosis Society

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3