Affiliation:
1. School of Forest Sciences University of Eastern Finland Joensuu Finland
2. Finnish Meteorological Institute Helsinki Finland
3. Department of Environmental Sciences University of Eastern Finland Kuopio Finland
4. Natural Resources Institute Finland (Luke) Joensuu Finland
5. Geological Survey of Finland Kuopio Finland
6. Department of Forest Sciences University of Helsinki Helsinki Finland
Abstract
AbstractClimate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long‐term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short‐term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.
Subject
General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献