Water level drawdown makes boreal peatland vegetation more responsive to weather conditions

Author:

Köster Egle1ORCID,Chapman Jack P. B.12,Barel Janna M.1ORCID,Korrensalo Aino34,Laine Anna M.15ORCID,Vasander Harri T.6,Tuittila Eeva‐Stiina1ORCID

Affiliation:

1. School of Forest Sciences University of Eastern Finland Joensuu Finland

2. Finnish Meteorological Institute Helsinki Finland

3. Department of Environmental Sciences University of Eastern Finland Kuopio Finland

4. Natural Resources Institute Finland (Luke) Joensuu Finland

5. Geological Survey of Finland Kuopio Finland

6. Department of Forest Sciences University of Helsinki Helsinki Finland

Abstract

AbstractClimate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long‐term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short‐term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.

Funder

Academy of Finland

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3