Metal concentrations in invasive Ailanthus altissima vs native Fraxinus ornus on ultramafic soils: Evidence for higher efficiency in Ni exclusion and adjustments to Mg and Ca imbalance

Author:

Selvi Federico1ORCID,Bettarini Isabella2,Cabrucci Marco1,Colzi Ilaria2,Coppi Andrea2,Lazzaro Lorenzo2,Mugnai Michele2ORCID,Gonnelli Cristina2

Affiliation:

1. Department of Agriculture, Food, Environment and Forestry University of Florence Florence Italy

2. Department of Biology University of Florence Florence Italy

Abstract

AbstractAilanthus altissima is one of the major invasive trees at a global scale. Despite numerous reports about its invasiveness in different habitats, so far it was not observed on harsh ultramafic soils and to colonize the vegetation of these outcrops. In this paper we show that the species can also spread in these habitats in the Mediterranean region and is able to cope with the severe anomalies of ultramafic soils. We sampled A. altissima in four ultramafic outcrops of central Italy and in control sites to unravel the behavior of this species toward the typically high soil concentrations of trace metals, such as Ni, Cr and Co, as well the imbalance of the Ca:Mg quotient. A similar sampling was performed for the native Fraxinus ornus that occurs naturally on a broad range of soils, including those from ultramafic rocks. Trace metal concentrations in leaves of both species were below toxicity thresholds, but A. altissima showed lower translocation and bioaccumulation factors (TF and BF, respectively) for Ni. Compared with F. ornus, the invasive species displayed higher leaf concentrations of Mg, thus suggesting a higher tolerance of potentially toxic levels of this element. Moreover, the higher TF and BF values for Ca in both control and serpentine populations suggested that A. altissima was more able to extract and accumulate this macronutrient in leaves in respect to F. ornus. Given the inherent deficiency of this element in ultramafic soils, efficient use of Ca could be a key trait contributing to the invasiveness of A. altissima on these soils.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3