The importance of expert selection when identifying threatened ecosystems

Author:

Travers Samantha K.12ORCID,Dorrough Josh3ORCID,Shannon Ian4ORCID,Val James5ORCID,Scott Mitchell L.4,Moutou Claudine J.4ORCID,Oliver Ian1ORCID

Affiliation:

1. New South Wales Department of Planning and Environment Lisarow NSW Australia

2. Centre for Ecosystem Science, School of Biological Earth and Environmental Sciences University of New South Wales Sydney NSW Australia

3. New South Wales Department of Planning and Environment Merimbula NSW Australia

4. New South Wales Department of Planning and Environment Paramatta NSW Australia

5. New South Wales Department of Planning and Environment Buronga NSW Australia

Abstract

AbstractIdentifying threatened ecosystem types is fundamental to conservation and management decision‐making. When identification relies on expert judgment, decisions are vulnerable to inconsistent outcomes and can lack transparency. We elicited judgements of the occurrence of a widespread, critically endangered Australian ecosystem from a diverse pool of 83 experts. We asked 4 questions. First, how many experts are required to reliably conclude that the ecosystem is present? Second, how many experts are required to build a reliable model for predicting ecosystem presence? Third, given expert selection can narrow the range opinions, if enough experts are selected, do selection strategies affect model predictions? Finally, does a diverse selection of experts provide better model predictions? We used power and sample size calculations with a finite population of 200 experts to calculate the number of experts required to reliably assess ecosystem presence in a theoretical scenario. We then used boosted regression trees to model expert elicitation of 122 plots based on real‐world data. For a reliable consensus (90% probability of correctly identifying presence and absence) in a relatively certain scenario (85% probability of occurrence), at least 17 experts were required. More experts were required when occurrence was less certain, and fewer were needed if permissible error rates were relaxed. In comparison, only ∼20 experts were required for a reliable model that could predict for a range of scenarios. Expert selection strategies changed modeled outcomes, often overpredicting presence and underestimating uncertainty. However, smaller but diverse pools of experts produced outcomes similar to a model built from all contributing experts. Combining elicited judgements from a diverse pool of experts in a model‐based decision support tool provided an efficient aggregation of a broad range of expertise. Such models can improve the transparency and consistency of conservation and management decision‐making, especially when ecosystems are defined based on complex criteria.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3