Cracking the myth: Bivalve farming is not a CO2 sink

Author:

Pernet Fabrice1ORCID,Dupont Sam23,Gattuso Jean‐Pierre45,Metian Marc3,Gazeau Frédéric4

Affiliation:

1. Ifremer Université de Brest, CNRS, IRD, LEMAR Argenton France

2. Department for Biological and Environmental Sciences University of Gothenburg Fiskebäckskil Sweden

3. Radioecology Laboratory International Atomic Energy Agency – Marine Environment Laboratories Monaco Monaco

4. Sorbonne Université CNRS, Laboratoire d'Océanographie de Villefranche Villefranche‐sur‐Mer France

5. Institute for Sustainable Development and International Relations Sciences Po Paris France

Abstract

AbstractBivalve farming was usually considered as a CO2 source through respiration and calcification, but recent studies suggest its potential as a CO2 sink, prompting exploration of its inclusion in carbon markets. Here we reviewed the scientific basis behind this idea and found that it is not supported by observational and experimental studies. This idea indeed arises from carbon budget models that are based on theoretical misconceptions regarding seawater carbonate chemistry. The main misunderstanding consists of assuming that the carbon trapped in the shell originates from atmospheric CO2 when it mostly comes from (bi)carbonate ions. While these ions originate from atmospheric CO2 through the erosion of minerals over geological time scales, their incorporation into shells does not prompt short‐term CO2 compensation. The opposite occurs—calcification releases CO2 in seawater and limits or even prevents the uptake of atmospheric CO2. Some authors suggest that considering the bivalve farm ecosystem could change the perspective on the source/sink issue but there is no evidence for that now. Most ecosystem‐based carbon budget models rely on several unverified assumptions and estimates. Although challenging, field measurements must be conducted for monitoring, reporting, and verifying atmospheric CO2 uptake before qualifying for carbon credits. To achieve scientific consensus, we need reinforcing measurement‐based studies of CO2 fluxes in shellfish ecosystems, integrating carbon balance models with observational and experimental science, and fostering interdisciplinary collaboration. Although bivalve farming provides numerous environmental benefits and is vital for sustainable aquaculture, there is currently no evidence that it contributes to CO2 capture.

Funder

European Maritime and Fisheries Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3