EEG markers of successful allocentric spatial working memory maintenance in humans

Author:

Meziane Hadj Boumediene12ORCID,Jabès Adeline2ORCID,Klencklen Giuliana12ORCID,Banta Lavenex Pamela12ORCID,Lavenex Pierre2ORCID

Affiliation:

1. Faculty of Psychology Swiss Distance University Institute Brig Switzerland

2. Institute of Psychology University of Lausanne Lausanne Switzerland

Abstract

AbstractSeveral brain regions in the frontal, occipital and medial temporal lobes are known to contribute to spatial information processing. In contrast, the oscillatory patterns contributing to allocentric spatial working memory maintenance are poorly understood, especially in humans. Here, we tested twenty‐three 21‐ to 32‐year‐old and twenty‐two 64‐ to 76‐year‐old healthy right‐handed adults in a real‐world, spatial working memory task and recorded electroencephalographic (EEG) activity during the maintenance period. We established criteria for designating recall trials as perfect (no errors) or failed (errors and random search) and identified 8 young and 13 older adults who had at least 1 perfect and 1 failed trial amongst 10 recall trials. Individual alpha frequency–based analyses were used to identify oscillatory patterns during the maintenance period of perfect and failed trials. Spectral scalp topographies showed that individual theta frequency band relative power was stronger in perfect than in failed trials in the frontal midline and posterior regions. Similarly, gamma band (30–40 Hz) relative power was stronger in perfect than in failed trials over the right motor cortex. Exact low‐resolution brain electromagnetic tomography in the frequency domain identified greater theta power in perfect than in failed trials in the secondary visual area (BA19) and greater gamma power in perfect than in failed trials in the right supplementary motor area. The findings of this exploratory study suggest that theta oscillations in the occipital lobe and gamma oscillations in the secondary motor cortex (BA6) play a particular role in successful allocentric spatial working memory maintenance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3