Suppressive effects of linzagolix, a novel non‐peptide antagonist of gonadotropin‐releasing hormone receptors, in experimental endometriosis model rats

Author:

Tezuka Motohiro1,Tsuchioka Kumi1,Kobayashi Kaoru1,Kuramochi Yu1,Kiguchi Sumiyoshi1

Affiliation:

1. Central Research Laboratories, Kissei Pharmaceutical Co., Ltd. Azumino Japan

Abstract

AbstractEndometriosis is an oestrogen‐dependent disease in which endometrial‐like tissue grows outside the uterus in women of reproductive age. Accordingly, control of oestradiol (E2) levels is an effective treatment for endometriosis. Because gonadotropin‐releasing hormone (GnRH) is the main controller of E2 secretion, control of GnRH signalling by GnRH antagonism is an effective strategy for the treatment of sex hormone‐dependent diseases such as endometriosis. The purpose of the present study was to evaluate the effects of the potent, orally available and selective GnRH antagonist linzagolix on experimental endometriosis in rats and compare them with those of dienogest, which is used clinically to treat endometriosis. Experimental endometriosis was induced in female rats at the proestrus stage of the oestrous cycle via autotransplantation of endometrial tissue into the renal subcapsular space. Linzagolix significantly decreased cyst volumes compared with the control group at doses of 50 mg/kg or more. Indeed, a suppressive effect of dienogest on cyst volume was observed only at the highest dose evaluated (1 mg/kg). The effective concentration of linzagolix, calculated as the free form of the last‐observed drug concentration, was ~1 μmol/L in endometriosis model rats. The present study also reveals that linzagolix exerts a sustained inhibitory effect on E2 secretion, indicating that the suppressive effect on endometriosis cyst volumes could be attributed to its pharmacological suppression of GnRH signalling and serum E2 concentrations. Altogether, our findings indicate that linzagolix may be a useful therapeutic intervention for hormone‐dependent diseases including endometriosis.

Publisher

Wiley

Subject

Physiology (medical),Pharmacology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3