Affiliation:
1. Department of Dermatology Zhongshan Hospital, Fudan University Shanghai China
2. Department of Dermatology Huashan Hospital, Fudan University, Shanghai Institute of Dermatology Shanghai China
Abstract
AbstractObjectivesWe previously revealed the role of tanshinone IIA (TAN IIA) on endothelial cells and the impact of TAN IIA on the endothelial‐to‐mesenchymal transition in systemic sclerosis (SSc). In this study, we sought to further determine whether TAN IIA can directly act on the skin fibroblasts of scleroderma and look into its underlying anti‐fibrotic mechanisms.MethodsBleomycin was used to establish the SSc mouse model. After TAN IIA treatment, dermal thickness, type I collagen and hydroxyproline content were measured. Primary fibroblasts were acquired from SSc patients and cultured in vitro, and the effects of TAN IIA on proliferation, apoptosis and the cell cycle of fibroblasts were detected.ResultsIn a bleomycin‐induced SSc model, we discovered that TAN IIA significantly improved skin thickness and collagen deposition, demonstrating a potent anti‐fibrotic action. TAN IIA inhibits the proliferation of skin fibroblasts derived from SSc patients by causing G2/M cell cycle arrest and promoting apoptosis. Additionally, TAN IIA downregulated extracellular matrix gene transcription and collagen protein expression in skin fibroblasts in a dose‐gradient‐dependent manner. Furthermore, we showed how TAN IIA can reduce the activation of the transforming growth factor‐β (TGF‐β)/Smad and mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) pathways, which are important factors in SSc.ConclusionsIn summary, these data suggest that TAN IIA can reduce SSc‐related skin fibrosis by modulating the TGF‐β/Smad and MAPK/ERK signalling pathways. More importantly, our results imply that TAN IIA can directly act on the skin fibroblasts of SSc, therefore, inhibiting fibrosis.
Funder
National Natural Science Foundation of China
Subject
Physiology (medical),Pharmacology,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献